Extensions 1→N→G→Q→1 with N=C18 and Q=C24

Direct product G=N×Q with N=C18 and Q=C24
dρLabelID
C24×C18288C2^4xC18288,840

Semidirect products G=N:Q with N=C18 and Q=C24
extensionφ:Q→Aut NdρLabelID
C18⋊C24 = C24×D9φ: C24/C23C2 ⊆ Aut C18144C18:C2^4288,839

Non-split extensions G=N.Q with N=C18 and Q=C24
extensionφ:Q→Aut NdρLabelID
C18.1C24 = C22×Dic18φ: C24/C23C2 ⊆ Aut C18288C18.1C2^4288,352
C18.2C24 = C22×C4×D9φ: C24/C23C2 ⊆ Aut C18144C18.2C2^4288,353
C18.3C24 = C22×D36φ: C24/C23C2 ⊆ Aut C18144C18.3C2^4288,354
C18.4C24 = C2×D365C2φ: C24/C23C2 ⊆ Aut C18144C18.4C2^4288,355
C18.5C24 = C2×D4×D9φ: C24/C23C2 ⊆ Aut C1872C18.5C2^4288,356
C18.6C24 = C2×D42D9φ: C24/C23C2 ⊆ Aut C18144C18.6C2^4288,357
C18.7C24 = D46D18φ: C24/C23C2 ⊆ Aut C18724C18.7C2^4288,358
C18.8C24 = C2×Q8×D9φ: C24/C23C2 ⊆ Aut C18144C18.8C2^4288,359
C18.9C24 = C2×Q83D9φ: C24/C23C2 ⊆ Aut C18144C18.9C2^4288,360
C18.10C24 = Q8.15D18φ: C24/C23C2 ⊆ Aut C181444C18.10C2^4288,361
C18.11C24 = C4○D4×D9φ: C24/C23C2 ⊆ Aut C18724C18.11C2^4288,362
C18.12C24 = D48D18φ: C24/C23C2 ⊆ Aut C18724+C18.12C2^4288,363
C18.13C24 = D4.10D18φ: C24/C23C2 ⊆ Aut C181444-C18.13C2^4288,364
C18.14C24 = C23×Dic9φ: C24/C23C2 ⊆ Aut C18288C18.14C2^4288,365
C18.15C24 = C22×C9⋊D4φ: C24/C23C2 ⊆ Aut C18144C18.15C2^4288,366
C18.16C24 = D4×C2×C18central extension (φ=1)144C18.16C2^4288,368
C18.17C24 = Q8×C2×C18central extension (φ=1)288C18.17C2^4288,369
C18.18C24 = C4○D4×C18central extension (φ=1)144C18.18C2^4288,370
C18.19C24 = C9×2+ 1+4central extension (φ=1)724C18.19C2^4288,371
C18.20C24 = C9×2- 1+4central extension (φ=1)1444C18.20C2^4288,372

׿
×
𝔽